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Abstract

We prove there always exists a prime integer between n and 2n for any natural number n > 1.

1 Notation

Throughout this paper, we will use p to represent a positive prime integer. Notation such as∏
p≤n

p

is interpreted as the product of all primes less than or equal to n.

For example, the prime counting function π(x) is the number of primes less than or equal to x.
Formally, we can express this as

π(x) =
∑
p≤x

1.

2 Lemmas

We first establish some very helpful lemmas.

Lemma 2.1. For any natural number n, we have

n∑
k=0

(
n

k

)
= 2n.

Proof. This is a well-known but non-trivial fact. Some popular proofs of this involve the binomial
theorem or induction. A nice combinatorial proof is as follows. Let S be a set of size n. We count
the size of P(S), the power set of S (set of all subsets of S), in two ways:

1. Recall the number of subsets of size k is
(
n
k

)
. Thus, the number of subsets of all sizes of S

can be expressed as
∑n

k=0

(
n
k

)
.
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2. Consider constructing all subsets of S. For each element x ∈ S, either x is included in the
subset or not included in the subset. In this way, we see that the number of subsets of S is
2n.

So, we have that

|P(S)| =
n∑
k=0

(
n

k

)
= 2n.

Lemma 2.2. (Legendre’s Formula) For any natural number n, the prime factorization of n! can
be expressed as

n! =
∏
p≤n

pep , where ep =
∞∑
k=1

⌊
n

pk

⌋
.

Proof. We want to find the largest power of p that divides n! = 1×2×· · ·×n. To count how many
times p appears in this product, we count how many numbers 1 to n are divisible by p, then by p2,
then by p3, etc.

From 1 to n, there are ⌊ n
pk
⌋ numbers divisible by pk. Legendre’s Formula then easily follows.

Lemma 2.3. Define a function ψ : R≥0 → Z as ψ(x) = ⌊2x⌋ − 2⌊x⌋ for all x ∈ R≥0. Let
{x} = x− ⌊x⌋ denote the “decimal part” of a real number x. Clearly, 0 ≤ {x} < 1. We then have

ψ(x) =

{
0 if 0 ≤ {x} < 1

2 ,

1 if 1
2 ≤ {x} < 1.

Proof. Suppose 0 ≤ {x} < 1
2 . Then, we have

0 ≤ x− ⌊x⌋ < 1

2
,

⌊x⌋ ≤ x < ⌊x⌋+ 1

2
,

2⌊x⌋ ≤ 2x < 2⌊x⌋+ 1.

From the first inequality, note that 2⌊x⌋ is an integer, and so we must also have 2⌊x⌋ ≤ ⌊2x⌋, im-
plying ψ(x) ≥ 0. From the second inequality, we can write ⌊2x⌋ < 2⌊x⌋+ 1 and see that ψ(x) < 1.
Since we know ψ(x) must be an integer, we must have ψ(x) = 0.

Suppose 1
2 ≤ {x} < 1. Then, we have

1

2
≤ x− ⌊x⌋ < 1,

⌊x⌋+ 1

2
≤ x < ⌊x⌋+ 1,

2⌊x⌋+ 1 ≤ 2x < 2⌊x⌋+ 2.
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From the first inequality, since 2⌊x⌋+1 is an integer, we must also have 2⌊x⌋+1 ≤ ⌊2x⌋, implying
ψ(x) ≥ 1. From the second inequality, we can write ⌊2x⌋ < 2⌊x⌋+ 2 and see that ψ(x) < 2. Thus,
we must have ψ(x) = 1.

Lemma 2.4. For all real numbers x ≥ 1, we have π(x) ≤ x− 1.

Proof. Clearly, the number of positive primes less than or equal to x is upper-bounded by the
number of positive integers less than or equal to x. There are ⌊x⌋ integers less than or equal to
x, and 1 is always among those integers. Since 1 is not prime, the number of primes is further
upper-bounded by ⌊x⌋ − 1. The lemma easily follows.

Lemma 2.5. For all real numbers x ≥ 1, we have that∏
p≤x

p ≤ 4x.

Proof. It is sufficient to show this lemma is true for all x ∈ N, since between integers, the left-hand
side doesn’t change while the right-hand side clearly increases. We prove by induction.

Our base cases of x = 1, 2 hold by simple computation. Assume the lemma holds for x =
1, 2, . . . , n− 1. We show this implies the lemma also holds for x = n.

If n is even, then n cannot be prime. So,∏
p≤n

p =
∏

p≤n−1

p ≤ 4n−1 ≤ 4n,

and the lemma holds true. If n is odd, write n = 2k + 1 for some integer k. Now, note that(
2k+1
k

)
= (2k+1)!

k!(k+1)! is divisible by every prime p with (k + 2) ≤ p ≤ 2k + 1. So,∏
k+2≤p≤2k+1

p |
(
2k + 1

k

)
.

We know that
(
2k+1
k

)
=

(
2k+1
k+1

)
, and from Lemma 2.1, we know that

(
2k+1
k

)
+

(
2k+1
k+1

)
≤ 22k+1 is

certainly true. Combining these gives 2
(
2k+1
k

)
≤ 22k+1, implying

(
2k+1
k

)
≤ 22k. So, we have

∏
k+2≤p≤2k+1

p ≤
(
2k + 1

k

)
≤ 22k = 4k.

Thus, we can write

∏
p≤2k+1

=

 ∏
p≤k+1

p

 ∏
k+2≤p≤2k+1

p

 ≤ (4k+1)(4k) = 42k+1.

We have shown the lemma holds true for x = n, so by induction, the lemma holds true for all
x ∈ N.
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Lemma 2.6. Bertrand’s Postulate holds for n ≤ 630. Explicitly, for every natural number 1 <
n ≤ 630, there exists a prime number p such that n < p < 2n.

Proof. The proof follows from the list of manually verified prime numbers below:

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631.

3 Bertrand’s Postulate

Theorem 3.1. (Bertrand’s Postulate) For any natural number n > 1, there exists a prime p such
that n < p < 2n.

Proof. Let n be a natural number with n > 1. We analyze the middle binomial coefficient
(
2n
n

)
.

We will derive lower and upper bounds on
(
2n
n

)
and show that Bertrand’s Postulate must be true

for the bounds to hold.

For the lower bound, we observe that
(
2n
k

)
is maximized when k = n. Thus,

(
2n
n

)
≥

(
2n
k

)
for

0 ≤ k ≤ 2n.

Define the set S as

S =

{(
2n

0

)
+

(
2n

2n

)
,

(
2n

1

)
,

(
2n

2

)
, . . . ,

(
2n

2n− 1

)}
.

Note that since n > 1, we must have
(
2n
n

)
> 2. Since

(
2n
0

)
=

(
2n
2n

)
= 1, we see that

(
2n
n

)
≥ s for all

s ∈ S. Thus, it must be the case that
(
2n
n

)
is lower bound of the average of all elements in S. With

Lemma 2.1, we have that (
2n

n

)
≥ 1

2n

∑
s∈S

s =
1

2n

2n∑
k=0

(
2n

k

)
=

22n

2n
(1)

For the upper bound, note that
(
2n
n

)
= (2n)!

n!n! , which we can use Lemma 2.2 to prime factorize as(
2n

n

)
=

∏
p≤2n p

ep

(
∏
p≤n p

fp)2
=

∏
p≤2n

pep−2fp , where ep =
∞∑
k=1

⌊
2n

pk

⌋
and fp =

∞∑
k=1

⌊
n

pk

⌋
.

Recall the ψ function defined in Lemma 2.3. We can rewrite the exponent ep − 2fp as

ep − 2fp =
∞∑
k=1

⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋
=

∞∑
k=1

ψ

(
n

pk

)
.
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On the last summation, note that for k > logp(2n), we have that p
k > 2n implying 0 < n

pk
< 1

2 and

thus ψ
(
n
pk

)
= 0. Thus, since the maximum output of the ψ function is 1, we can more specifically

write

ep − 2fp =

⌊logp(2n)⌋∑
k=1

ψ

(
n

pk

)
≤ logp(2n). (2)

Let us break up the prime factorization of
(
2n
n

)
into four different sections in the following way:

(
2n

n

)
=

 ∏
p≤2n

pep−2fp


=

 ∏
p≤

√
2n

pep−2fp


 ∏

√
2n<p≤ 2n

3

pep−2fp


 ∏

2n
3
<p≤n

pep−2fp


 ∏
n<p≤2n

pep−2fp

 .

For primes p >
√
2n, we have that p2 > 2n, implying n

p2
< 1

2 . From this, we see n
pk
< 1

2 for all

k ≥ 2. With Lemma 2.3, we see that ψ( n
pk
) = 0 for k ≥ 2, and

ep − 2fp = ψ

(
n

p

)
, for p >

√
2n.

For primes n < p < 2n, we have that 1
2 <

n
p < 1. It then follows that

{
n
p

}
≥ 1

2 and so ψ
(
n
p

)
= 1.

(As a sanity check, note that primes between n and 2n must appear in the prime factorization of
(2n)! but cannot appear in the prime factorization of n!. Thus, it makes sense these primes remain

in the prime factorization of
(
2n
n

)
= (2n)!

n!n! .)

For primes 2n
3 < p ≤ n, we have that 1 ≤ n

p <
3
2 , implying that {np} <

1
2 . So, ψ

(
n
p

)
= 0.

Now, we can write

(
2n

n

)
=

 ∏
p≤

√
2n

pep−2fp


 ∏

√
2n<p≤ 2n

3

p
ψ(n

p
)


 ∏

2n
3
<p≤n

p0


 ∏
n<p≤2n

p



=

 ∏
p≤

√
2n

pep−2fp


 ∏

√
2n<p≤ 2n

3

p
ψ(n

p
)


 ∏
n<p≤2n

p

 .
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Recalling the maximum output of the ψ function is 1 and (2), we have

(
2n

n

)
=

 ∏
p≤

√
2n

pep−2fp


 ∏

√
2n<p≤ 2n

3

p
ψ(n

p
)


 ∏
n<p≤2n

p



≤

 ∏
p≤

√
2n

plogp(2n)


 ∏

√
2n<p≤ 2n

3

p


 ∏
n<p≤2n

p



=

 ∏
p≤

√
2n

2n


 ∏

√
2n<p≤ 2n

3

p


 ∏
n<p≤2n

p



= (2n)π(
√
2n)

 ∏
√
2n<p≤ 2n

3

p


 ∏
n<p≤2n

p

 .

Applying Lemma 2.4 and being a bit less restrictive on some bounds gives a final upper bound of

(
2n

n

)
≤ (2n)

√
2n−1

 ∏
p≤ 2n

3

p


 ∏
n<p≤2n

p

 . (3)

Now, suppose Bertrand’s Postulate is false, and there is some n such that no primes exist between
n and 2n. The last product in the upper bound equation above would collapse to 1. Combining
the lower bound in (1), we have

22n

2n
≤

(
2n

n

)
≤ (2n)

√
2n−1

 ∏
p≤ 2n

3

p

 .

Applying Lemma 2.5 to the product, we have

22n

2n
≤ (2n)

√
2n−14

2n
3 = (2n)

√
2n−12

4n
3 ,

2
2n
3 ≤ (2n)

√
2n,

2
√

2n
3 ≤ 2n.

Let x =
√
2n. We have that

2
x
3 ≤ x2,
x

3
≤ 2 log2(x),

x ≤ 6 log2(x),

x− 6 log2(x) ≤ 0.
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Let f(x) = x − 6 log2(x). Graphing technology shows that f(x) ≤ 0 certainly does not hold true
for x ≥ 32:

5 10 15 20 25 30 35 40

−10

10

20

30

x

f(x)

f(x) = x− 6 log2(x)

We can reach the same conclusion without technology. Note that f ′(x) = 1− 6
x ln(2) . This function

is increasing when f ′(x) ≥ 0, or when

1− 6

x ln(2)
≥ 0,

x ≥ 6

ln(2)
≈ 8.65...

Plugging in x = 32 gives f(32) = 32− 6 log2(32) = 32− 30 = 2. Since x only increases from here,
it’s clear that f(x) > 0 for x ≥ 32.

We have found a contradiction for x ≥ 32. Note x =
√
2n ≥ 32 implies n ≥ 512. Thus, we

have found a contradiction for n ≥ 512, showing Bertrand’s Postulate must hold true for such n.
Combined with Lemma 2.6, the entirety of Bertrand’s Postulate follows.
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