
LeMMA: Learning Math by Meta-Adaptation

Zeyneb N. Kaya
Stanford University

zeynebnk@stanford.edu

Nick Rui
Stanford University

nickrui@stanford.edu

Sandra Yang
Stanford University

aleyang@stanford.edu

1 Introduction

Automated mathematical theorem proving in formal languages has emerged as a critical benchmark
for evaluating LLM reasoning capabilities (Yang et al., 2024). Unlike natural language tasks, formal
proofs in functional programming languages like Lean 4 (de Moura and Ullrich, 2021) offer objective,
mechanically verifiable evaluation, eliminating the ambiguity inherent in assessing informal reasoning.
However, progress is severely bottlenecked by data scarcity. Formal proof datasets remain orders
of magnitude smaller than code or text corpora, as expert-curated formal proofs are inherently limited
in supply and expensive to produce (Yang et al., 2024).

Existing approaches synthetically generate training data offline, creating static datasets that are applied
uniformly across all problems (Hubert et al., 2025; Ren et al., 2025). However, different theorems
require different background knowledge and reasoning patterns. A model tasked with generating a topol-
ogy proof, for example, may not benefit from training on synthetic data about number theory. We hypoth-
esize that generating targeted, problem-specific synthetic data at test time—adapting the training distri-
bution to each individual theorem—will more effectively address the model’s specific knowledge gaps.

We introduce LeMMA (Learning Math by Meta-Adaptation), a framework that reframes theorem
proving as a test-time meta-learning task. The input to our system is a formal theorem statement in
Lean 4 syntax. The model first generates related synthetic lemmas and proofs. A specialized Weigher
model then scores these examples based on their utility for the target problem. Finally, the prover
adapts its parameters on this weighted, problem-specific dataset before outputting a verifiable proof
attempt (in Lean 4 syntax). By dynamically constructing a custom curriculum at inference time,
LeMMA addresses problem-specific knowledge gaps.

2 Related Work

Formal Reasoning with LLMs. Recent LLM theorem provers have demonstrated significant progress
on formal reasoning benchmarks. DeepSeek-Prover-V2 (Ren et al., 2025) achieves state-of-the-art
performance by training on large synthetic datasets generated through search-based methods.
AlphaProof (Hubert et al., 2025) achieved gold-medal performance at the International Math Olympiad
(IMO) through reinforcement learning methods. However, these approaches rely on large-scale offline
training and do not adapt to individual problem characteristics at test time.

Self-Generated Curricula. Self-play Theorem Provers (STP) (Dong and Ma, 2025) shows that models
can construct their own training data. By conjecturing theorems and attempting proofs iteratively,
successfully verified theorems become training data for future iterations. This bootstrapping process
allows models to discover and learn from mathematical structures they find tractable, effectively
curating their own curriculum. This shows self-generated training data provides meaningful learning
signals, implying models need not rely solely on human-curated datasets to improve reasoning.

Meta-learning. Meta-learning trains models to rapidly adapt to new tasks without retraining from
scratch. Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017) optimizes initial parameters for
fast few-shot adaptation, while Test-Time Training (TTT) (Sun et al., 2020) adapts models at inference
by updating weights based upon test inputs. Self-Adapting Language Models (SEAL) (Zweiger et al.,
2025) extends this through persistent self-improvement: models iteratively generate content, evaluate
downstream effects, and reinforce successful updates.

Stanford CS229 Machine Learning



These approaches collectively demonstrate that language models can generate their own training
data, adapt at test time, and weigh examples by utility. However, self-play occurs offline with uniform
datasets, while test-time adaptation has not been applied to formal reasoning. We combine these
capabilities by performing problem-specific self-play at inference time, generating custom training
data for each theorem and dynamically adapting the prover.

3 Dataset

We work with formal theorem-proof pairs in Lean 4 from Lean Workbook (Ying et al., 2024) and
miniF2F (Zheng et al., 2022), datasets consisting of problems spanning algebra, number theory,
calculus, geometry, and combinatorics at the high school to undergraduate level.

We use 4,417 examples from Lean Workbook to build a cold-start training dataset to enable conjecture
generation (following Dong and Ma (2025)), 16 examples from miniF2F-train for meta-training of the
bilevel optimization loop, and 100 randomly sampled problems from miniF2F-test for evaluation. We
use DeepSeek-Prover’s standard tokenizer. No additional normalization or augmentation is applied.

Figure 1: Example Lean 4 Code. This is a proof for the equality 2
∑n

i=1i=n(n+1).

4 Methods

We introduce LeMMA, which approaches automated theorem proving as a bilevel meta-learning
problem. Meta-learning trains models to “learn how to learn” by optimizing for rapid adaptation to
new tasks rather than training once on fixed data (Finn et al., 2017). In our setting, each theorem T is
treated as a distinct task, and we meta-learn which synthetic training data enables effective adaptation
to each specific problem. Given target theorem T , LeMMA generates synthetic auxiliary problems
and proofs, learns to weight these examples by their utility for proving T , and adapts model parameters
on this weighted dataset before attempting the proof (see Figure 2).

Figure 2: LeMMA pipeline. Meta-adaptation workflow from input theorem T to proof attempt P̂ .

We formulate this as a bilevel optimization problem. We seek parameters that minimize an outer loss
on the target theorem while adapting via a weighted update on synthetic auxiliary data:

min
η,θ

Louter(θ
′(η,θ);T ) s.t. θ′=θ−α

m∑
i=1

wi(η;T,li,pi)∇θℓ(li,pi;θ),

2



where Louter is the cross-entropy loss on verified proofs of T , θ′ are the adapted parameters, α is the
inner-loop learning rate, and ℓ(li,pi;θ) is the supervised fine-tuning loss on (li,pi).

In the outer loop, given T , model θ generates m candidate conjecture theorems {l1,...,lm} related to
T . For each conjecture li, it attempts proof pi, creating dataset A={(l1,p1),...,(lm,pm)} of auxiliary
training examples. Only pairs verified by the Lean 4 compiler are retained. A compact Weigher
model η then scores each example’s relevance to T by taking (T,li,pi) as input and outputting a scalar
score, similar to Calian et al. (2025). These scores are normalized via softmax to obtain a probability
distribution over examples: wi=exp(η(T,li,pi))/

∑m
j=1exp(η(T,lj ,pj)).

In the inner loop, rather than fine-tuning all model parameters (expensive for 7B models), we use
Low-Rank Adaptation (LoRA) (Hu et al., 2021), which freezes the base model weights and learns
low-rank update matrices ∆W =BA where B∈Rd×r and A∈Rr×d with rank r≪d. During forward
passes, activations are computed as h=W0x+BAx where W0 are frozen pre-trained weights. This
reduces trainable parameters significantly while preserving adaptation quality. We train the LoRA
adapter via weighted supervised fine-tuning with loss Linner=

∑m
i=1wi ·ℓ(li,pi;θ), where ℓ is standard

cross-entropy for next-token prediction. After adaptation, θ′ generates k proof attempts for T , each
validated via Lean 4 compiler.

To train the Weigher η, we compute gradients of the outer loss with respect to η. Since η affects θ′
through the weights wi in the inner loop, this requires differentiating through the optimization process
itself. We use mixed-mode bilevel differentiation (Kemaev et al., 2025), which combines forward-mode
and reverse-mode automatic differentiation to efficiently compute second-order gradients:

∂Louter

∂η
=

∂Louter

∂θ′
∂θ′

∂η
,

∂θ′

∂η
=−α

m∑
i=1

∂wi

∂η
∇θℓ(li,pi;θ).

The quantity ∂Louter

∂wi
indicates whether increasing weight wi helps or hurts performance on T after

adaptation, providing a learning signal for the Weigher.

Beyond updating the Weigher, we also improve the base model θ’s ability to generate useful conjectures
using Group Relative Policy Optimization (GRPO), a policy gradient reinforcement learning method.
The reward for generating conjecture li is derived from the meta-gradient: we assign positive reward
to examples with negative ∂Louter

∂wi
(examples that reduce the outer loss). We additionally perform

standard supervised fine-tuning on all verified synthetic proofs to maintain proof generation quality.
For each meta-training theorem, we perform one outer loop iteration: generate synthetic examples,
weight them, adapt on weighted data, attempt to prove T , compute meta-gradients, and update both η
and θ. The LoRA adapter is reset for each new theorem. This process occurs both during meta-training
(to learn η) and at test time (using learned η to adapt to new theorems).

5 Experiments

5.1 Experimental Setup

Base Model and Hyperparameters. We work with DeepSeek-Prover-V2-7B (Ren et al., 2025) as
our base model θ, and work with a lightweight LoRA (rank 8, scaling factor α=8) throughout training.
The Weigher model η follows the base architecture but is compressed to 2 layers with 4 attention heads
for efficiency. We generate synthetic theorems and proofs with temperature 0.7 to balance coherence
and diversity.

Cold-Start Training. Prover models are only trained to generate proofs. For conjecture generation,
we construct a small initialization dataset from a subset of 4,417 problems from Lean Workbook,
following the conjecture-training approach of STP (Dong and Ma, 2025). The data is composed of 80%
replay proving tasks and 20% theorem generation tasks. Target theorems are identified by selecting
lemmas used in seed theorem proofs or theorems sharing common lemmas.

Training. We train LeMMA on 16 theorems from miniF2F-train. For each training theorem, we
generate 8 candidate conjectures with 5 proof attempts each, retaining at most 2 verified attempts per
conjecture. Meta-gradient computation is expensive with high memory requirements; we use MixFlow-
MG reparameterization Kemaev et al. (2025) for mixed-mode forward-over-reverse differentiation and
block-level gradient checkpointing for efficient Hessian-vector products. Meta-gradients are computed

3



over 3 inner loop steps. Both inner-loop SFT and outer-loop meta-updates use learning rate 5×10−5.
Due to memory constraints, we use batch size 1 with gradient accumulation to simulate effective batch
size 2. We run one outer-loop epoch. We do not perform cross-validation due to our small training set.

Inference. At test time, for each theorem, LeMMA generates 8 conjectures with 2 proof attempts each.
We then perform one epoch of unweighted SFT on the filtered synthetic dataset before attempting the
target theorem 5 times. Each proof attempt is validated through a Lean 4 REPL (read-eval-print-loop)
pipeline.

5.2 Results

We evaluate on a subset of 100 theorems randomly sampled from miniF2F-test (Zheng et al., 2022),
which contains 244 formalized olympiad and undergraduate problems. Our primary metric is
Lean-verified pass@5 accuracy, which is the percentage of problems where at least one of 5 generated
proofs passes full Lean compiler verification.

Table 1 shows our main results. Under a matched 5-sample budget, LeMMA achieves 33% accuracy
compared to 23% for DeepSeek-Prover-V2-7B baseline. However, LeMMA incurs approximately
2.2× the FLOPs per theorem due to synthetic data generation, Weigher evaluation, and adapter
fine-tuning. To ensure fair comparison, we scale the baseline sample budget to 12 (≈ 2.2 times the
compute), yielding 25% accuracy, which LeMMA still outperforms by 8%.

Method Sample budget miniF2F-test

DeepSeek-Prover-V2-7B (Ren et al., 2025) 5 23%
12 25%

LeMMA 5 33%

Table 1: Lean-verified accuracy on 100 theorems from miniF2F-test.

5.3 Analysis

Figure 3: Progress over training. Number of
successfully verified synthetic theorem-proof
pairs (out of 8 generated) across 16 meta-
training theorems.

We observe a consistent increase in synthetic example
verification rates across adaptation steps (Figure 3).
Early in training, around 0-3 generated synthetic ex-
amples pass verification, whereas later, more than
half of the model’s generated theorem proof-pairs
are valid. Inspecting successful cases, LeMMA fre-
quently learns to introduce short auxiliary lemmas
that isolate a key algebraic identity or rewrite step that
relate to the main proof.

For example, Figure 4 illustrates LeMMA’s success-
ful performance on IMO 1983 P6 (an example from
miniF2F-test), which asks to prove a2b(a − b) +
b2c(b− c)+ c2a(c−a)≥ 0 for triangle side lengths
a,b,c ∈ R. We observe a model-generated training
example that proves the simpler two-variable analog
a2(a−b)+b2(b−a)≥0 for nonnegative a,b∈R.

The synthetic two-variable inequality proof utilizes a
particular algebraic maneuver: expand the expression, reorder terms, and isolate a nonnegative structure.
Later, when attempting the full three-variable cyclic inequality, the model adopts a similar “expand
and regroup” approach. While we cannot draw a direct conclusion about the internal mechanisms, the
behavior is consistent with LeMMA’s design objective: by fine-tuning on problem-adjacent synthetic
examples, we hypothesize that the model may shift its internal scoring of candidate proof tokens or
intermediate expressions toward patterns more contributive to successful proofs.

From analyzing failed proof attempts, LeMMA struggles with dense and syntactically complex
theorems. We observe the lowest pass rates on combinatorics problems, aligning with findings from

4



Figure 4: Test-time adaptation on IMO 1983 P6. LeMMA first generated a simpler proof and, after
fine-tuning on that datapoint, successfully proved the original problem. We observe similarities in
proof structure and use of Lean tactics, suggesting the model learned a generalizable proof strategy.

Liu et al. (2025), which cite combinatorics as the most challenging domain for LLM provers due to
lack of broadly-applicable proof strategies between problems.

5.4 Discussion

In formal theorem proving, test-time compute budgets are typically large: prior work samples over
200,000 proof candidates per theorem (Ren et al., 2025; Calian et al., 2025). Rather than increasing
sampling, LeMMA more effectively uses this compute on generating problem-specific synthetic data
and performing meta-updates to learn from it. We have shown that within the same budget, test-time
compute can be used more effectively through meta-adaptation rather than scaling sample budget.

With only 16 meta-training theorems, overfitting is a serious concern. We attempted to mitigate
overfitting by (1) drawing from strictly disjoint datasets (miniF2F-train and miniF2F-test), (2) using
low-rank LoRA adapters that are reset for each theorem, and (3) limiting meta-training to a single
outer-loop epoch with only three inner adaptation steps. Given these constraints and the fact that
hyperparameters were not tuned on the test set, we believe LeMMA is likely not significantly overfit.

6 Conclusion / Future Work

Our results provide initial evidence that allocating test-time compute to meta-adaptation yields better
returns than scaling sample budgets. By fine-tuning on self-generated, problem-specific synthetic data,
LeMMA achieved 33% pass rate on miniF2F, outperforming a compute-matched DeepSeek-Prover-V2
baseline by 8%. Qualitative analysis suggests that simple synthetic proofs can guide the model toward
correct final proofs.

We present LeMMA as a proof of concept. Due to the high memory cost of meta-gradient computation,
our training was limited to a small set of data. While this small scale validates the signal provided
by our bilevel optimization objective, achieving robust generalization will require scaling to larger
training sets and deeper adaptation windows.

Future work could scale to more training theorems and extend LeMMA beyond formal mathematics
to symbolic integration, program verification, and multi-step reasoning to assess whether adaptive
synthetic generation generalizes across logical domains. This work suggests meta-learning provides a
promising direction for test-time improvement in automated reasoning systems.

5



7 Contributions

Zeyneb Kaya: Formulating and implementing training pipeline; developing and integrating verifica-
tion; parallelization and compute optimization; writing.

Nick Rui: Lean verification pipeline; baseline model benchmarking; inference pipeline; scripts to
parse model outputs and gather metrics; qualitative analysis of results; writing.

Sandra Yang: VM, GPU, and environment setup; baseline model benchmarking; observability/evalua-
tion scripts to parse Lean responses and generate metrics; quantitative analysis of results; writing.

References
Dan A. Calian, Gregory Farquhar, Iurii Kemaev, Luisa M. Zintgraf, Matteo Hessel, Jeremy Shar,

Junhyuk Oh, András György, Tom Schaul, Jeffrey Dean, Hado van Hasselt, and David Silver. 2025.
Datarater: Meta-learned dataset curation.

Kefan Dong and Tengyu Ma. 2025. Stp: Self-play llm theorem provers with iterative conjecturing and
proving. arXiv preprint arXiv:2502.00212.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-learning for fast adaptation
of deep networks. CoRR, abs/1703.03400.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models.

Thomas Hubert, Rishi Mehta, Laurent Sartran, Miklós Z. Horváth, Goran Žužić, Eric Wieser, Aja
Huang, Julian Schrittwieser, Yannick Schroecker, Hussain Masoom, Ottavia Bertolli, Tom Zahavy,
Amol Mandhane, Jessica Yung, Iuliya Beloshapka, Borja Ibarz, Vivek Veeriah, Lei Yu, Oliver
Nash, Paul Lezeau, Salvatore Mercuri, Calle Sönne, Bhavik Mehta, Alex Davies, Daniel Zheng,
Fabian Pedregosa, Yin Li, Ingrid von Glehn, Mark Rowland, Samuel Albanie, Ameya Velingker,
Simon Schmitt, Edward Lockhart, Edward Hughes, Henryk Michalewski, Nicolas Sonnerat, Demis
Hassabis, Pushmeet Kohli, David Silver, et al. 2025. Olympiad-level formal mathematical reasoning
with reinforcement learning. Nature.

Iurii Kemaev, Dan A. Calian, Luisa M. Zintgraf, Gregory Farquhar, and Hado van Hasselt. 2025.
Scalable meta-learning via mixed-mode differentiation. arXiv preprint arXiv:2505.00793.

Junqi Liu, Xiaohan Lin, Jonas Bayer, Yael Dillies, Weijie Jiang, Xiaodan Liang, Roman Soletskyi,
Haiming Wang, Yunzhou Xie, Beibei Xiong, Zhengfeng Yang, Jujian Zhang, Lihong Zhi, Jia Li, and
Zhengying Liu. 2025. Combibench: Benchmarking llm capability for combinatorial mathematics.

Leonardo de Moura and Sebastian Ullrich. 2021. The lean 4 theorem prover and programming language.
In Automated Deduction–CADE 28: 28th International Conference on Automated Deduction, Virtual
Event, July 12–15, 2021, Proceedings, volume 12699 of Lecture Notes in Computer Science, pages
625–635. Springer.

Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang, Yuxuan
Liu, Wenjun Gao, Daya Guo, and Chong Ruan. 2025. Deepseek-prover-v2: Advancing formal
mathematical reasoning via reinforcement learning for subgoal decomposition. arXiv preprint
arXiv:2504.21801.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. 2020. Test-time
training with self-supervision for generalization under distribution shifts. In Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pages 9229–9248. PMLR.

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn
Song. 2024. Formal mathematical reasoning: A new frontier in ai. arXiv preprint arXiv:2412.16075.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. 2024. Lean workbook:
A large-scale lean problem set formalized from natural language math problems. In Advances in
Neural Information Processing Systems, volume 37. Datasets and Benchmarks Track.

6

http://arxiv.org/abs/2505.17895
https://arxiv.org/abs/2502.00212
https://arxiv.org/abs/2502.00212
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/2106.09685
https://doi.org/10.1038/s41586-025-09833-y
https://doi.org/10.1038/s41586-025-09833-y
https://arxiv.org/abs/2505.00793
http://arxiv.org/abs/2505.03171
https://doi.org/10.1007/978-3-030-79876-5_37
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.21801
https://proceedings.mlr.press/v119/sun20b.html
https://proceedings.mlr.press/v119/sun20b.html


Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. 2022. minif2f: a cross-system benchmark for
formal olympiad-level mathematics. In International Conference on Learning Representations.

Adam Zweiger, Jyothish Pari, Han Guo, Ekin Akyürek, Yoon Kim, and Pulkit Agrawal. 2025. Self-
adapting language models. arXiv preprint arXiv:2506.10943.

7

https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/forum?id=9ZPegFuFTFv
https://arxiv.org/abs/2506.10943
https://arxiv.org/abs/2506.10943

	Introduction
	Related Work
	Dataset
	Methods
	Experiments
	Experimental Setup
	Results
	Analysis
	Discussion

	Conclusion / Future Work
	Contributions

