
Probabilistic Estimation of Prime Number Density

Nick Rui

March 2025

Introduction

Prime numbers are mysterious and nonchalant. One probabilistic question to be asked about prime
numbers is, given a random natural number x ∈ [1, n], what is the probability that x is prime, in
terms of n?

From the Prime Number Theorem, we now know that probability is approximately 1/ ln(n). More
precisely, the number of prime numbers in the range of [1, n], denoted π(n) is roughly

π(n) ≈ n

ln(n)

Thus, the probability of picking a random number from [1, n] and it being prime is 1/ ln(n). Said
differently, the proportion of prime numbers from [1, n] is roughly 1/ ln(n).

Gauss was the first to think of this idea. More impressively, he put forward this conjecture (which
would eventually lead to the Prime Number Theorem) as a teenager. Since I am still 18, I thought
tackling this problem was appropriate.

Gauss had a lot of aura because this guy literally brute-forced his way to this conclusion. He would
straight-up manually verify — by hand — whether or not numbers on the scale of millions if they
were prime or not. By counting how many primes he found, he guessed that π(n) had to grow
something like the function n/ ln(n).

Unfortunately, I do not have the patience and precision to manually work out prime numbers by
hand. Luckily, I have the power of computation...and probability.

In this project, I verify that Gauss’ conjecture (and the Prime Number Theorem) is correct through
two probabilistic applications:

(1) A primality test using sampling and Bayes’ Theorem.

(2) Random (Monte Carlo) sampling to estimate the proportion of primes between [1, n].

1

1 Bayesian Primality Test

The main idea here is Fermat’s little theorem, which says that if p is a prime number, then for all
nonzero integers a < p we have

ap−1 ≡ 1 mod p.

Say we have some candidate number x which we want to determine whether or not it is prime. The
naive brute-force approach is to check whether any integer 2 ≤ a ≤ ⌈

√
n⌉ divides x. If not, then x

is prime. However, this requires checking lots of numbers. On the other hand, if we randomly pick
some a and ax−1 ̸≡ 1 mod x, then we immediately know that x is not prime.

However, it could be by chance that ak−1 ≡ 1 mod k for composite k. In fact, there do exist some
rare numbers (called Carmichael numbers) k that satisfy Fermat’s little theorem for all a coprime
to k. These Carmichael numbers essentially “behave” like primes, but aren’t actually prime (a good
example is 561). Thus, if our number k satisfies Fermat’s little theorem for one a, we cannot claim
it is prime, but intuitively we know it is more likely to be prime than we previously had thought.
This is where Bayes’ theorem and inference can be applied.

Instead of the brute-force approach to test whether or not a number is prime — which takes a lot
of work but always gives a concrete, correct answer — I took a randomized approach, which takes
much less work but only returns a probability belief that a number is prime. Using randomized
sampling to yield a numeric result (a Monte Carlo algorithm) is justified here because our end
goal is to look at the proportion of primes between [1, n] for some large n, and so occasionally
over-counting a prime is (as we will see later on) insignificant for large n.

(In Math 62DM, we learned a rapid (polynomial time) deterministic algorithm to do this (the
AKS primality test). Though that algorithm is objectively better, whats the fun without a little
uncertainty?)

Let p represent our belief that x ∈ [1, n] is prime. The algorithm does the following:

• Assume a prior belief of p = 0.5 (because we don’t know any better).

• Randomly pick an integer “witness” 2 ≤ a1 < x.

• Check if a1 divides x. If so, then k must be composite, and so p = 0.

• Check if ax−1
1 ≡ 1 mod x. (This may seem computationally heavy, but with a repeated-

squaring trick with modular arithmetic we can rapidly verify this.) If so, then we update our
belief p to reflect that. (If not, then again p = 0).

• Repeat for many iterations. Randomly pick more integers 2 ≤ ai < x and perform the same
Fermat tests with these “witnesses” ai.

Let P represent the event that x is prime, and let F be the event that our number x satisfies
Fermat’s little theorem for one randomly sampled ai. What is P (P|F)? With Bayes’ theorem, we
have

P (P|F) =
P (F |P)P (P)

P (F)

In context, we have

• P (P) = p, the prior belief that x is prime.

• P (F |P) = 1, since if k is prime then it must satisfy Fermat’s little theorem.

• P (F) = P (F |P)P (P)+P (F |PC)P (PC) = p+(1−p)P (F |PC) by the law of total probability.
We have one unknown here, namely the probability that a non-prime number will end up
satisfying Fermat’s little theorem for one randomly sampled ai. One could suppose that ax−1

i

could be any equivalence class mod x (0, 1, . . . , x − 1 mod x), and so a broad assumption
we will make is that in the worst case this probability is 1/2 (this is a very broad and bold
assumption).

Thus, our updated posterior belief is

P (P|F) =
P (F |P)P (P)

P (F)

=
p

p+ (1− p)12
.

(See Figure 1 and Figure 2.)

The equation we derived confirms our intuition: as we observe successful Fermat tests, our confi-
dence in the number’s primality increases. Starting from a neutral prior of p = 0.5, a single passing
test raises our confidence to approximately 0.667. With repeated successful tests, this confidence
grows even further, as each new piece of evidence compounds upon the previous updates.

For example, if we update our prior to 0.667 after one test, and then perform a second test which
also passes, our posterior probability becomes approximately 0.8. A third successful test would in-
crease this to around 0.89. This demonstrates how quickly our certainty grows with multiple passes.

However, we must remember that this approach remains probabilistic — it cannot provide abso-
lute certainty like a deterministic primality test would. For example, the presence of Carmichael
numbers, which pass all Fermat tests despite being composite, creates an inherent limitation to
this method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p = 0.5

(0.5, 0.667)

Prior Probability p = P (P)

P
os
te
ri
or

P
ro
b
ab

il
it
y
P
(P

|F
)

Bayesian Update After a Single Passing Fermat Test

P (P|F) = posterior

P (P) = prior

Figure 1: The curve shows how a prior probability p is updated to posterior probability P (P|F) after
observing a successful Fermat test. For example, a prior of p = 0.5 is updated to P (P|F) ≈ 0.667.
The dashed line represents no change in probability.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prior Probability p = P (P)

P
os
te
ri
o
r
P
ro
b
ab

il
it
y
P
(P

|F
)

Bayesian Updates After Multiple Passing Fermat Tests

No update

After 1 test

After 2 tests

After 3 tests

Figure 2: This graph shows how the posterior probability evolves with multiple sequential Fermat
tests, starting from different prior values. Each curve represents the update after an additional test
passes. Notice how a prior of p = 0.5 is updated to approximately 0.67, 0.8, and 0.89 after one,
two, and three passing tests respectively.

2 Verification of the Prime Number Theorem

With our probabilistic primality test established, we can now use it to estimate the proportion of
prime numbers in different ranges, testing Gauss’s conjecture.

The approach is as followed straightforward:

• For a range of values of n = ej for j = 2, 3, . . . , 20.

• Randomly sample numbers between 1 and n. These are our “prime candidates”.

• For each sampled number, use our Bayesian primality test to determine if it’s likely prime.

• Calculate the proportion of probable primes among our samples

• Compare this proportion to the theoretical 1/ ln(n) = 1/j predicted by the Prime Number
Theorem

This Monte Carlo approach gives us an empirical verification of the Prime Number Theorem without
requiring us to identify all primes in a range. Instead, we’re using probability theory twice: once
in our primality test, and again in our sampling approach.

3 Results

The actual Python implementation of this can be found in a Jupyter notebook. There, you will
find the necessary functions for the Bayesian primality test and prime number theorem verification,
along with the example data that I show below.

When running this experiment for values of j from 2 to 20 (corresponding to numbers up to approx-
imately e20 ≈ 485 million), I observed a remarkable alignment between the sampled proportions
and the theoretical predictions from the Prime Number Theorem.

As j increases and we examine larger ranges, the proportions continue to follow the 1/ ln(n) curve
predicted by the Prime Number Theorem. This provides compelling empirical evidence for Gauss’s
original conjecture.

Table 1: Comparison of Estimated vs. Theoretical Prime Density (Selected Values)

j n ≈ ej
Theoretical
1/ ln(n)

Monte Carlo
Estimation

5 1.48×102 0.2000 0.2433

10 2.20×104 0.1000 0.1103

15 3.27×106 0.0667 0.0725

20 4.85×108 0.0500 0.0507

25 7.20×1010 0.0400 0.0410

30 1.07×1013 0.0333 0.0364

35 1.59×1015 0.0286 0.0280

100 102 104 106 108 1010 1012 1014 1016
0

0.1

0.2

0.3

0.4

0.5

0.6

n = ej

P
ro
p
or
ti
on

of
P
ri
m
es

Monte Carlo Estimation vs. Theoretical Proportion

Theoretical: 1/ ln(n)

Monte Carlo Estimate

Figure 3: Comparison between Monte Carlo estimates of prime density and the theoretical pre-
diction from the Prime Number Theorem. The alignment demonstrates the validity of both our
probabilistic approach and Gauss’s original conjecture.

3.1 Error Analysis

Our approach introduces some sources of error, including

(i) False positive detection of primes (the presence of Carmichael numbers).

(ii) Statistical sampling error from randomly selecting numbers

(iii) Probabilistic error from our Bayesian primality test

With enough samples, errors (ii) and (iii) become negligible. What is obvious, however, is the exis-
tence of Carmichael numbers causing false positives in our Bayesian primality test. This is obvious
when we realize that our estimates seem to always be a bit higher than the actual proportion of
primes. The gap between our estimate and the actual curve can be thought of as the density of
Carmichael numbers.

However, from the data it seems that the density of Carmichael numbers gets smaller and smaller
as n increases. Thus, our algorithm gives a good enough estimate for large values of n.

4 Conclusion

Through a probabilistic approach, I’ve demonstrated an alternative perspective to verifying the
Prime Number Theorem using Bayesian inference and Monte Carlo sampling. Unlike Gauss’s man-
ual counting, this method leverages computational power and probability theory to achieve the
same insight with less effort.

The Bayesian primality test offers an interesting trade-off between computational efficiency and
certainty, allowing us to quickly classify numbers as probably prime or definitely composite.

A probabilistic primality test could have potential application in fields like cryptography, where
verifying if a number is prime or not is a problem that computers have to solve. However, we must
be wary and ethical of the way such algorithms are used, since if we develop a primality test that
could determine prime numbers in a very fast amount of time (computer scientists fear that quan-
tum computers could do this — if implemented correctly), then much of the current cybersecurity
space could be threatened.

Future work might include refining the estimate of P (F |PC) beyond our simplified 1/2 assumption,
incorporating additional primality criteria to better identify Carmichael numbers, or using more
sophisticated sampling strategies to reduce the variance in our proportion estimates.

5 Acknowledgments

Generative AI was used to

(i) Help write scripts to display data into figures and graph with Matplotlib.

(ii) Help create tables and graphs in LATEX.

This project was initially created for the CS 109 challenge. I drew inspiration from my experi-
ences learning about prime numbers in Math 62DM (abstract algebra and number theory) and
randomized algorithms in CS 161 (algorithms).

6 Appendix (Python Script)

-*- coding: utf-8 -*-

"""109 project.ipynb

Automatically generated by Colab.

Original file is located at

https://colab.research.google.com/drive/1WoUsP7_p2zBmc9QRB3VE2CokQTrEtpAn

Scripts

Imports

"""

import random

import math

import numpy as np

import matplotlib.pyplot as plt

import time

from tqdm.notebook import tqdm

import pandas as pd

from IPython.display import display, Markdown

random.seed(42)

np.random.seed(42)

"""## Bayesian Primality Test"""

def gcd(a, b):

"""

Compute the greatest common divisor of a and b using Euclidean algorithm.

"""

while b:

a, b = b, a % b

return a

def power_mod(base, exponent, modulus):

"""

Compute (base^exponent) % modulus efficiently using repeated squaring algorithm.

This is much faster than the naive approach for large exponents.

"""

if modulus == 1:

return 0

result = 1

base = base % modulus

while exponent > 0:

If exponent is odd, multiply result with base

if exponent % 2 == 1:

result = (result * base) % modulus

Divide the exponent by 2

exponent = exponent >> 1 # Same as exponent // 2

Square the base

base = (base * base) % modulus

return result

def fermat_test(n, a):

"""

Perform Fermat’s primality test for a single witness ’a’.

Returns:

- True if n passes the test (might be prime)

- False if n is definitely composite

"""

Edge cases

if n <= 1:

return False

if n <= 3:

return True

if n % 2 == 0:

return False

Check if a divides n

if gcd(a, n) > 1:

return False

Check Fermat’s Little Theorem: a^(n-1) 1 (mod n)

if power_mod(a, n-1, n) != 1:

return False

return True

def bayesian_primality_test(n, k=10, prior_probability=0.5):

"""

Perform Fermat’s primality test with k random witnesses,

updating probability using Bayes’ theorem.

Parameters:

- n: number to test for primality

- k: number of random witnesses to test

- prior_probability: prior belief that n is prime

Returns:

- final_probability: posterior probability that n is prime

"""

Handle edge cases

if n <= 1:

return 0.0

if n <= 3:

return 1.0

if n % 2 == 0:

return 0.0

Initialize current probability

current_probability = prior_probability

Estimate probability of a composite number passing Fermat’s test (using 1/2 as in the paper)

p_pass_if_composite = 0.5

for i in range(k):

Choose a random witness between 2 and n-2

a = random.randint(2, n-2)

Perform the test

test_passed = fermat_test(n, a)

if test_passed:

Update using Bayes’ theorem

P(prime|pass) = P(pass|prime) * P(prime) / P(pass)

p_pass_given_prime = 1.0

p_prime = current_probability

p_composite = 1.0 - p_prime

P(pass) using law of total probability

p_pass = (p_pass_given_prime * p_prime) + (p_pass_if_composite * p_composite)

Apply Bayes’ theorem

current_probability = (p_pass_given_prime * p_prime) / p_pass

else:

If test fails, the number is definitely composite

current_probability = 0.0

break

return current_probability

"""## Monte Carlo Verification of Prime Number Theorem"""

def monte_carlo_prime_theorem(j_values=range(2, 21), num_samples=10000, k=10, threshold=0.95):

"""

Verify the Prime Number Theorem using Monte Carlo sampling for values x = e^j.

Parameters:

- j_values: range of j values for testing (x = e^j)

- num_samples: number of random samples to test for each j

- k: number of witnesses for the Bayesian primality test

- threshold: probability threshold for declaring a number prime

Returns:

- results: list of dictionaries with experiment results

"""

results = []

for j in tqdm(j_values, desc="Testing j values from 2 to 20"):

x = math.exp(j)

num_primes = 0

print(f"\nTesting j = {j}, x = e^{j} {x:.2f}")

start_time = time.time()

for i in range(num_samples):

Generate a random number from 2 to x (avoid 0, 1)

sample = max(2, int(random.uniform(2, x)))

Use the Bayesian primality test with confidence threshold

prob = bayesian_primality_test(sample, k=k)

if prob >= threshold:

num_primes += 1

Calculate proportions

elapsed_time = time.time() - start_time

sampled_proportion = num_primes / num_samples

theoretical_proportion = 1 / math.log(x)

Calculate ratio and error

ratio = sampled_proportion / theoretical_proportion

error = abs(sampled_proportion - theoretical_proportion) / theoretical_proportion * 100

result = {

’j’: j,

’x’: x,

’sampled_proportion’: sampled_proportion,

’theoretical_proportion’: theoretical_proportion,

’ratio’: ratio,

’error’: error,

’time’: elapsed_time

}

results.append(result)

print(f" Samples tested: {num_samples}")

print(f" Primes found: {num_primes}")

print(f" Sampled proportion: {sampled_proportion:.6f}")

print(f" Theoretical (1/ln(x)): {theoretical_proportion:.6f}")

print(f" Ratio: {ratio:.4f}")

print(f" Error: {error:.2f}%")

print(f" Time elapsed: {elapsed_time:.2f} seconds")

return results

"""## Visualization"""

def plot_monte_carlo_results(results):

"""

Plot the Monte Carlo results compared to theoretical predictions.

Parameters:

- results: List of dictionaries with experiment results

Returns:

- plt: Matplotlib figure object

"""

plt.figure(figsize=(12, 8))

Extract data

j_values = [result[’j’] for result in results]

x_values = [result[’x’] for result in results]

sampled_props = [result[’sampled_proportion’] for result in results]

theoretical_props = [result[’theoretical_proportion’] for result in results]

Create comparison plot with log scale for x-axis

plt.semilogx(x_values, theoretical_props, ’r-’, linewidth=2, label=’Theoretical: 1/ln(x)’)

plt.semilogx(x_values, sampled_props, ’bo’, markersize=6, label=’Monte Carlo Estimate’)

Format plot

plt.grid(True, which="both", ls="-")

plt.xlabel(’x = e^j’)

plt.ylabel(’Proportion of Primes’)

plt.title(’Monte Carlo Estimation vs. Theoretical Proportion’)

plt.legend()

Set y-axis limits with some margin

plt.ylim(0, max(max(sampled_props), max(theoretical_props)) * 1.2)

return plt

"""# Testing"""

def main():

"""Main execution function to verify the Prime Number Theorem."""

print("Verifying the Prime Number Theorem using Monte Carlo sampling")

print("===")

print("This will estimate the proportion of primes for x = e^j where j ranges from 2 to 20")

print("For each range, we’ll sample random numbers and test primality using the Bayesian approach")

print("Then we’ll compare the results to the theoretical prediction from the Prime Number Theorem: 1/ln(x)")

print("\nParameters:")

print("- j values: 2 to 20")

print("- Samples per range: 10,000")

print("- Fermat test witnesses: 10")

print("- Primality threshold: 0.95")

print("\nStarting verification...\n")

Run Monte Carlo verification for j from 2 to 20

results = monte_carlo_prime_theorem(

j_values=range(2, 36),

num_samples=10000,

k=10,

threshold=0.95

)

Display results as a table

print("\nSummary of Results:")

df_results = pd.DataFrame(results)

display(df_results[[’j’, ’x’, ’theoretical_proportion’, ’sampled_proportion’, ’error’, ’time’]])

Create comparison plots

print("\nGenerating visualization of results...")

plot_monte_carlo_results(results).show()

Save results to CSV

df_results.to_csv(’prime_number_theorem_verification.csv’, index=False)

print("Results saved to prime_number_theorem_verification.csv")

print("\nVerification completed!")

main()

	Bayesian Primality Test
	Verification of the Prime Number Theorem
	Results
	Error Analysis

	Conclusion
	Acknowledgments
	Appendix (Python Script)

